
Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

INSTRUCT: Space-Efficient Structure for
Indexing and Complete Query Management

of String Databases

Sourav Dutta, Arnab Bhattacharya
sodutta3@in.ibm.com, arnabb@iitk.ac.in

IBM Research Lab, New Delhi
Dept. of Computer Science and Engineering, Indian Institute of Technology, Kanpur

COMAD
8th December, 2010

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

sodutta3@in.ibm.com
arnabb@iitk.ac.in

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Related Work

Motivation

Explosion of sequence data

String databases are reaching terabytes of storage

Modern applications no longer limited to exact string matching

They demand intelligent prefix, suffix and substring search facilities

Current storage and indexing techniques fail to cater to all these
issues simultaneously

They also waste storage space by not reusing the common characters

We introduce INSTRUCT
I INdexing STrings by Re-Using Common Triplets

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Related Work

Existing structures

Hash tables
I Fastest exact search operation
I However, do not support other search operations

Binary and ternary search trees (BST and TST)
I Efficiently supports exact string search only

Suffix and prefix trees
I Efficiently supports exact as well as prefix/suffix search
I Fails for substring search

Trie family
I Re-uses space, but only for common prefix
I Does not support substring search
I May use dictionary compression to reduce storage
I May use merging of buckets to re-use space

n-gram indexing
I Expensive merge operations for generating results

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Related Work

Existing structures

Hash tables
I Fastest exact search operation
I However, do not support other search operations

Binary and ternary search trees (BST and TST)
I Efficiently supports exact string search only

Suffix and prefix trees
I Efficiently supports exact as well as prefix/suffix search
I Fails for substring search

Trie family
I Re-uses space, but only for common prefix
I Does not support substring search
I May use dictionary compression to reduce storage
I May use merging of buckets to re-use space

n-gram indexing
I Expensive merge operations for generating results

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Related Work

Existing structures

Hash tables
I Fastest exact search operation
I However, do not support other search operations

Binary and ternary search trees (BST and TST)
I Efficiently supports exact string search only

Suffix and prefix trees
I Efficiently supports exact as well as prefix/suffix search
I Fails for substring search

Trie family
I Re-uses space, but only for common prefix
I Does not support substring search
I May use dictionary compression to reduce storage
I May use merging of buckets to re-use space

n-gram indexing
I Expensive merge operations for generating results

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Related Work

Existing structures

Hash tables
I Fastest exact search operation
I However, do not support other search operations

Binary and ternary search trees (BST and TST)
I Efficiently supports exact string search only

Suffix and prefix trees
I Efficiently supports exact as well as prefix/suffix search
I Fails for substring search

Trie family
I Re-uses space, but only for common prefix
I Does not support substring search
I May use dictionary compression to reduce storage
I May use merging of buckets to re-use space

n-gram indexing
I Expensive merge operations for generating results

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Related Work

Existing structures

Hash tables
I Fastest exact search operation
I However, do not support other search operations

Binary and ternary search trees (BST and TST)
I Efficiently supports exact string search only

Suffix and prefix trees
I Efficiently supports exact as well as prefix/suffix search
I Fails for substring search

Trie family
I Re-uses space, but only for common prefix
I Does not support substring search
I May use dictionary compression to reduce storage
I May use merging of buckets to re-use space

n-gram indexing
I Expensive merge operations for generating results

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Structure of INSTRUCT

Keys are composed from an alphabet set Σ of size k

Maximum length of any key is l

Basic idea is to index triplets or 3-grams

Collection of k nodes, each corresponding to a character in Σ

Each node consists of a k × k matrix

Cell in node c1 at row c2 and at column c3 represents the triplet
c1c2c3
When a particular triplet is present in a key, the corresponding cell is
marked

Position information of a triplet in a key is also incorporated

Each cell is broken into an array of size l to denote which position the
triplet occurs

This is called the position array

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Structure of INSTRUCT

Keys are composed from an alphabet set Σ of size k

Maximum length of any key is l

Basic idea is to index triplets or 3-grams

Collection of k nodes, each corresponding to a character in Σ

Each node consists of a k × k matrix

Cell in node c1 at row c2 and at column c3 represents the triplet
c1c2c3
When a particular triplet is present in a key, the corresponding cell is
marked

Position information of a triplet in a key is also incorporated

Each cell is broken into an array of size l to denote which position the
triplet occurs

This is called the position array

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Implementation of INSTRUCT

Implemented as bit vectors – regular 4-dimensional array of size k3l

Bit operations are faster and easier

When a particular bit at node c1, row c2, column c3 and position w is
set, it indicates that there exists a key in the database with the triplet
c1c2c3 at position w

A

A

A

B

B

C

C D

D

A

1 2 53 4
position
mark

A

B

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Implementation of INSTRUCT

Implemented as bit vectors – regular 4-dimensional array of size k3l

Bit operations are faster and easier

When a particular bit at node c1, row c2, column c3 and position w is
set, it indicates that there exists a key in the database with the triplet
c1c2c3 at position w

A

A

A

B

B

C

C D

D

A

1 2 53 4
position
mark

A

B

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Mark array

INSTRUCT structure by itself does not disambiguate among all keys

Consider strings ‘ABCA’ and ‘DBCD’ to be present
I P[A][B][C][1] = P[B][C][A][2] = P[D][B][C][1] = P[B][C][D][2] = 1

Searching for strings ‘ABC’ and ‘ABCD’ would return a false positive
as P[A][B][C][1] and P[B][C][D][2] bits are appropriately set

This problem occurs as the history regarding the key(s) of which a
triplet is a part of, is lost

To alleviate the problem, another l element bit array called mark is
used

A set bit in mark implies that there exists at least one key that ends
at that position with that triplet

I Thus, M[B][C][A][2] = M[B][C][D][2] = 1
I Search for ‘ABC’ is correctly reported as false now
I Search for ‘ABCD’ is still returned as a false positive

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Mark array

INSTRUCT structure by itself does not disambiguate among all keys

Consider strings ‘ABCA’ and ‘DBCD’ to be present
I P[A][B][C][1] = P[B][C][A][2] = P[D][B][C][1] = P[B][C][D][2] = 1

Searching for strings ‘ABC’ and ‘ABCD’ would return a false positive
as P[A][B][C][1] and P[B][C][D][2] bits are appropriately set

This problem occurs as the history regarding the key(s) of which a
triplet is a part of, is lost

To alleviate the problem, another l element bit array called mark is
used

A set bit in mark implies that there exists at least one key that ends
at that position with that triplet

I Thus, M[B][C][A][2] = M[B][C][D][2] = 1
I Search for ‘ABC’ is correctly reported as false now
I Search for ‘ABCD’ is still returned as a false positive

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Mark array

INSTRUCT structure by itself does not disambiguate among all keys

Consider strings ‘ABCA’ and ‘DBCD’ to be present
I P[A][B][C][1] = P[B][C][A][2] = P[D][B][C][1] = P[B][C][D][2] = 1

Searching for strings ‘ABC’ and ‘ABCD’ would return a false positive
as P[A][B][C][1] and P[B][C][D][2] bits are appropriately set

This problem occurs as the history regarding the key(s) of which a
triplet is a part of, is lost

To alleviate the problem, another l element bit array called mark is
used

A set bit in mark implies that there exists at least one key that ends
at that position with that triplet

I Thus, M[B][C][A][2] = M[B][C][D][2] = 1
I Search for ‘ABC’ is correctly reported as false now
I Search for ‘ABCD’ is still returned as a false positive

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Container

When a mark bit is set, a container is allocated to hold the keys
ending at that position with that particular triplet

I Container with M[B][C][D][2] = 1 stores the string ‘DBCD’
I Container with M[B][C][A][2] = 1 stores the string ‘ABCA’
I So, search for ‘ABCD’ will now return false

This guarantees completely accurate results – no false positives or
false negatives

Container can be
I Binary search tree (BST): faster searching, slower insertion
I List: slower searching, faster insertion

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Container

When a mark bit is set, a container is allocated to hold the keys
ending at that position with that particular triplet

I Container with M[B][C][D][2] = 1 stores the string ‘DBCD’
I Container with M[B][C][A][2] = 1 stores the string ‘ABCA’
I So, search for ‘ABCD’ will now return false

This guarantees completely accurate results – no false positives or
false negatives

Container can be
I Binary search tree (BST): faster searching, slower insertion
I List: slower searching, faster insertion

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Analysis of INSTRUCT structure

Main indexing structure requires only 2k3l bits

All possible strings of length l are indexed without increasing this size

Bit implementation enables the use of standard bit manipulation
operations like RIGHT SHIFT, AND, etc., thereby making them
efficient

For very large databases, if the complete index structure does not fit
into the main memory, the various nodes of INSTRUCT can be stored
on disks and can be independently fetched and processed for various
triplets

For keys of length 1 and 2 having no well defined triplets, special
containers are maintained

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Insertion

Insertion is done by simply setting the bits corresponding to each
triplet and each position

The final triplet also sets the corresponding mark bit and the string is
inserted into the corresponding container

A

B

C

D

A

1 2 3

m

p

m

p

m

p

m

p

1 2 3

A

1 2 3

CB

1 2 3

D

1

m

p

m

p

m

p

m

p

C

1 2 3 1 2 3 1 2 3 1 2 3

A

B

C

D

A B C D

1

1

’?CAD’

A

Insertion of key ‘ACAD’
First triplet (‘ACAD’) Last triplet (‘ACAD’)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Exact string search

Exact search is done similarly by checking the bits corresponding to
each triplet and each position
If any bit is unset, the key is reported to be absent
Even if all the bits are set, the final container needs to be searched
The above procedure is called index strategy

Alternatively, only the mark bit corresponding to the final triplet can
be checked
If it is unset, the key is absent; otherwise, the container is searched
This procedure is called direct strategy
Direct strategy is better when

I Size of database is large as most bits are then likely to be set
Index strategy is better when

I Length of key is large as then chances of hitting a negative is more
I Size of alphabet is large as then chances of hitting the same character,

and therefore, the same triplet, is less

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Exact string search

Exact search is done similarly by checking the bits corresponding to
each triplet and each position
If any bit is unset, the key is reported to be absent
Even if all the bits are set, the final container needs to be searched
The above procedure is called index strategy
Alternatively, only the mark bit corresponding to the final triplet can
be checked
If it is unset, the key is absent; otherwise, the container is searched
This procedure is called direct strategy

Direct strategy is better when
I Size of database is large as most bits are then likely to be set

Index strategy is better when
I Length of key is large as then chances of hitting a negative is more
I Size of alphabet is large as then chances of hitting the same character,

and therefore, the same triplet, is less

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Exact string search

Exact search is done similarly by checking the bits corresponding to
each triplet and each position
If any bit is unset, the key is reported to be absent
Even if all the bits are set, the final container needs to be searched
The above procedure is called index strategy
Alternatively, only the mark bit corresponding to the final triplet can
be checked
If it is unset, the key is absent; otherwise, the container is searched
This procedure is called direct strategy
Direct strategy is better when

I Size of database is large as most bits are then likely to be set
Index strategy is better when

I Length of key is large as then chances of hitting a negative is more
I Size of alphabet is large as then chances of hitting the same character,

and therefore, the same triplet, is less

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Analysis of exact string search

Key of length n

For index strategy, container will be searched if and only if for all
corresponding triplets and positions, the bits are set

In other words, the database contains all such keys

Number of keys in database having length at least w is f (w)

Assume all characters to be equi-probable (having probability 1/k)

Probability that at least one key contains character c1 at position w is

Pw = 1− P(no key contains c1)

= 1− (P(key contains character other than c1))f (w)

= 1− (1− 1/k)f (w) (1)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Analysis of exact string search

Key of length n

For index strategy, container will be searched if and only if for all
corresponding triplets and positions, the bits are set

In other words, the database contains all such keys

Number of keys in database having length at least w is f (w)

Assume all characters to be equi-probable (having probability 1/k)

Probability that at least one key contains character c1 at position w is

Pw = 1− P(no key contains c1)

= 1− (P(key contains character other than c1))f (w)

= 1− (1− 1/k)f (w) (1)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Analysis of exact string search (contd.)

Probability that triplet c1c2c3 occurs at position w is

Pw ,3 = Pw .Pw+1.Pw+2

=
(

1− (1− 1/k)f (w)
)
.
(

1− (1− 1/k)f (w+1)
)
.(

1− (1− 1/k)f (w+2)
)

' 1−
w+2∑
i=w

(1− 1/k)f (i) [ignoring higher order terms] (2)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Analysis of exact string search (contd.)

The last bit must be set in the mark array as well

Number of keys in database having length exactly w is g(w)

Probability that at least one key ends at character c1 at position w is

Pwe = 1− (1− 1/k)g(w) (3)

Probability that triplet c1c2c3 ends at position w is

Pwe ,3 ' 1−
w+1∑
i=w

(1− 1/k)f (i) − (1− 1/k)g(w+2) (4)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Analysis of exact string search (contd.)

Probability that all triplets of the search key are present in the
database at corresponding positions is

Pn =

n−3∏
j=1

Pj ,3

 .Pn−2e ,3

=
n−3∏
j=1

1−
j+2∑
i=j

(1− 1/k)f (i)

 .

(
1−

n−1∑
i=n−2

(1− 1/k)f (i) − (1− 1/k)g(n)

)

' 1−
n−2∑
j=1

j+2∑
i=j

(1− 1/k)f (i) + (1− 1/k)f (n) − (1− 1/k)g(n) (5)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Analysis of exact string search (contd.)

Since each of the f (i) and g(i) terms are bounded by m, Pn can be
upper bounded as

Pn ≤ 1−
n−2∑
j=1

j+2∑
i=j

(1− 1/k)m

= 1− 3(n − 2) (1− 1/k)m (6)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Expected running time

Assume that search through index structure requires Ts time

Search through container requires Tc time

With probability Pn, a container is searched

Therefore, expected running time is

Ti = (1− Pn)Ts + Pn(Ts + Tc) (7)

The alternate direct strategy checks for the last mark bit only

If it is set, a container is searched

Therefore, expected running time is

Td = Pn−2e ,3Tc (8)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Expected running time

Assume that search through index structure requires Ts time

Search through container requires Tc time

With probability Pn, a container is searched

Therefore, expected running time is

Ti = (1− Pn)Ts + Pn(Ts + Tc) (7)

The alternate direct strategy checks for the last mark bit only

If it is set, a container is searched

Therefore, expected running time is

Td = Pn−2e ,3Tc (8)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Comparison

It is beneficial to search through the index structure when

Ti ≤ Td

or, Ts ≤ (Pn−2e ,3 − Pn)Tc

or,
Ts

Tc
≤ 3(n − 3)

(
1− 1

k

)m

(9)

Thus, index strategy is better when
I n increases
I k increases
I m decreases

Conforms with intuition and experiments

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Suffix search

A suffix search is almost same as exact string search

However, since length of key containing suffix is not known, all
possible lengths must be searched

Suppose query suffix is c1c2 . . . cf

If mark bit for last triplet is set at position p, then position bit for last
but one triplet must be set at exactly p − 1

Number of such positions p may be more than one

Efficiently implemented using bit vector operations
I Suppose mark array for last triplet is L
I Position array for last but one triplet is RIGHT SHIFT-ed and then

AND-ed with L
I Containers corresponding to bits still set are searched

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Suffix search

A suffix search is almost same as exact string search

However, since length of key containing suffix is not known, all
possible lengths must be searched

Suppose query suffix is c1c2 . . . cf

If mark bit for last triplet is set at position p, then position bit for last
but one triplet must be set at exactly p − 1

Number of such positions p may be more than one

Efficiently implemented using bit vector operations
I Suppose mark array for last triplet is L
I Position array for last but one triplet is RIGHT SHIFT-ed and then

AND-ed with L
I Containers corresponding to bits still set are searched

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Prefix search

Key idea: Prefix is reverse of suffix

All database keys are reversed and stored in a separate INSTRUCT
structure

This is called the reverse INSTRUCT structure

This structure is invoked only for prefix search, and therefore, can be
maintained on disk

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Substring Search

Key idea: Any substring, when sufficiently shifted, becomes a prefix

Extra l − 1 reverse INSTRUCT structures

i th structure stores the original key shifted by i places

However, containers store the entire key to facilitate returning the key

Substring search now maps to prefix searches in these extra structures

For the last triplet, only the position bit and not the mark bit is
checked

Space requirement increases by a factor of l

Reverse structures are brought to memory only on demand

Expected number of prefix searches for a substring query of length s is

Eprefix ≤ l × (1− 3(s − 2) (1− 1/k)m) (10)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Substring Search

Key idea: Any substring, when sufficiently shifted, becomes a prefix

Extra l − 1 reverse INSTRUCT structures

i th structure stores the original key shifted by i places

However, containers store the entire key to facilitate returning the key

Substring search now maps to prefix searches in these extra structures

For the last triplet, only the position bit and not the mark bit is
checked

Space requirement increases by a factor of l

Reverse structures are brought to memory only on demand

Expected number of prefix searches for a substring query of length s is

Eprefix ≤ l × (1− 3(s − 2) (1− 1/k)m) (10)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Substring Search

Key idea: Any substring, when sufficiently shifted, becomes a prefix

Extra l − 1 reverse INSTRUCT structures

i th structure stores the original key shifted by i places

However, containers store the entire key to facilitate returning the key

Substring search now maps to prefix searches in these extra structures

For the last triplet, only the position bit and not the mark bit is
checked

Space requirement increases by a factor of l

Reverse structures are brought to memory only on demand

Expected number of prefix searches for a substring query of length s is

Eprefix ≤ l × (1− 3(s − 2) (1− 1/k)m) (10)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Insertion
Exact String Search
Analysis of Search
Prefix/Suffix Search
Substring Search

Substring Search

Key idea: Any substring, when sufficiently shifted, becomes a prefix

Extra l − 1 reverse INSTRUCT structures

i th structure stores the original key shifted by i places

However, containers store the entire key to facilitate returning the key

Substring search now maps to prefix searches in these extra structures

For the last triplet, only the position bit and not the mark bit is
checked

Space requirement increases by a factor of l

Reverse structures are brought to memory only on demand

Expected number of prefix searches for a substring query of length s is

Eprefix ≤ l × (1− 3(s − 2) (1− 1/k)m) (10)

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Experimental setup

Two real datasets
1 English dictionary
2 Protein sequences

Synthetic datasets generated by controlling following parameters
1 Total number of keys, m
2 Size of alphabet, k
3 Largest key length, l
4 Length of query string, n
5 Probability distribution of characters – uniform or Zipfian

Out of total keys generated, 2/3rd is inserted

Rest 1/3rd is used to trigger unsuccessful searches

Half of keys inserted, i.e., 1/3rd of total is used to trigger successful
searches

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Real datasets

Dataset
Keys Symbols Length Total number Container size False

m k l of characters Max. Avg. positive

English
179,935 26 45 1,198,635 601 7.5 0.019

dictionary
Protein

38,627 21 2512 5,846,331 205 1.3 0.161
sequences

False positive measures the rate when a container is searched for an
unsuccessful key

For dictionary dataset, the index structure prunes almost all
unsuccessful searches

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Real datasets

Index Total Time to Searching time
structure memory insert Succ Unsucc Total

INS. BST 1.50MB 1.42 s 0.51 s 0.54 s 1.05 s
INS. List 1.50MB 1.29 s 0.59 s 0.58 s 1.17 s
Burst tr. 1.53MB 1.61 s 0.64 s 0.66 s 1.30 s

Compact tr. 2.38MB 1.82 s 0.65 s 0.65 s 1.31 s

Index Total Time to Searching time
structure memory insert Succ Unsucc Total

INS. BST 15.73MB 4.89 s 2.28 s 2.21 s 4.49 s
INS. List 15.73MB 4.66 s 2.44 s 2.16 s 4.60 s
Burst tr. 15.89MB 5.64 s 2.64 s 2.67 s 5.31 s

Compact tr. 25.71MB 9.29 s 2.70 s 2.37 s 5.07 s

INSTRUCT has lower storage requirements

It also requires lesser running time

Choice of containers does not matter when average size of container
is low

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Effect of number of keys

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 m

em
or

y
sp

ac
e

(M
B

)

Number of keys (m) (x106)

Zipfian dataset: k = 10, l = 15

INSTRUCT
Burst trie

Compact trie

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Number of keys(m) (x105)

Uniform dataset: k=36, l=20

Index search
Direct search

INSTRUCT requires the least amount of memory

Size grows linearly with number of keys due to size of containers

Pruning for index search is high for small number of keys

Pruning for direct search is always low

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Effect of largest key length

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25

T
ot

al
 in

se
rt

io
n

tim
e

(s
)

Largest key length (l)

Uniform dataset: m = 2.0x106, k = 10

INSTRUCT List
INSTRUCT BST

Burst trie
Compact trie

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25

T
ot

al
 s

ea
rc

h
tim

e
fo

r
al

l k
ey

s
(s

)

Largest key length (l)

Uniform dataset: m = 2.0x106, k = 10

INSTRUCT List
INSTRUCT BST

Burst trie
Compact trie

INSTRUCT requires setting of bits only and is, therefore, faster

With increase in key length, INSTRUCT can prune unsuccessful
searches more and is, therefore, faster

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Effect of size of alphabet

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 5 10 15 20 25

T
ot

al
 s

ea
rc

h
tim

e
fo

r
al

l k
ey

s
(s

)

Size of alphabet (k)

Uniform dataset: m = 2.0x106, l = 10

INSTRUCT List
INSTRUCT BST

Burst trie
Compact trie

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Alphabet size(k)

Uniform dataset: l=20, m=1x105

Index search
Direct search

For small alphabets, there is practically no pruning and container sizes
are extremely large

This leads to higher searching time

Pruning increases exponentially with size of alphabet

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Effect of query length on suffix search

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14

T
ot

al
 s

ea
rc

h
tim

e
(s

)

Suffix length (n)

Searching 2x106 suffixes (m=2x106, k=10, l=15)

Uniform (Index)
Uniform (Direct)

Zipfian (Index)
Zipfian (Direct)

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Suffix length (n)

Uniform dataset: k=10, l=15, m=2x106

Index search
Direct search

For short suffixes, direct strategy performs better as it bypasses
searching through the INSTRUCT structure

Index strategy performs better as length of suffix increases

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Effect of query length on substring search

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14

T
ot

al
 s

ea
rc

h
tim

e
(s

)

Substring length (n)

Searching 2x106 substrings (m=2x106, k=10, l=15)

Uniform (Index)
Uniform (Direct)

Zipfian (Index)
Zipfian (Direct)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14

%
 p

ru
ni

ng
 o

bt
ai

ne
d

Length of substring (n)

Uniform dataset:k=10, l=15, m=2x106

Index Search
Direct search

Similar behavior as in suffix search

Absolute running times are higher

Absolute pruning ratios are smaller

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Experimental Setup
Real Datasets
Effect of Parameters
Summary

Summary of experiments

For an expanding database, container should be implemented as a
list; otherwise, BST is better

For large databases of more than 106 keys, direct strategy is better
than index strategy

When query string length is more than 9 or alphabet size is more than
15, index strategy performs better

INSTRUCT has better or comparable running times with other
competing structures

In general, INSTRUCT is the best choice for memory purposes

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Conclusions

We designed a simple indexing structure, INSTRUCT, that requires
the least amount of space

It supports the full range of string queries including exact, suffix,
prefix and substring search

INSTRUCT procedures can be easily implemented as parallel
algorithms

Actual effects of parallelization need to be measured

Choice of other structures such as hash table for containers needs to
be explored

THANK YOU!

Questions?

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Conclusions

We designed a simple indexing structure, INSTRUCT, that requires
the least amount of space

It supports the full range of string queries including exact, suffix,
prefix and substring search

INSTRUCT procedures can be easily implemented as parallel
algorithms

Actual effects of parallelization need to be measured

Choice of other structures such as hash table for containers needs to
be explored

THANK YOU!

Questions?

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

Introduction
Structure of INSTRUCT

Algorithms
Experiments
Conclusions

Conclusions

We designed a simple indexing structure, INSTRUCT, that requires
the least amount of space

It supports the full range of string queries including exact, suffix,
prefix and substring search

INSTRUCT procedures can be easily implemented as parallel
algorithms

Actual effects of parallelization need to be measured

Choice of other structures such as hash table for containers needs to
be explored

THANK YOU!

Questions?

Arnab Bhattacharya, CSE, IITK Space-Efficient Indexing of Strings

	Introduction
	Related Work

	Structure of INSTRUCT
	Algorithms
	Insertion
	Exact String Search
	Analysis of Search
	Prefix/Suffix Search
	Substring Search

	Experiments
	Experimental Setup
	Real Datasets
	Effect of Parameters
	Summary

	Conclusions

